

碧云天生物技术/Beyotime Biotechnology 订货热线: 400-1683301或800-8283301 订货e-mail: order@beyotime.com 技术咨询: info@beyotime.com 网址: http://www.beyotime.com

BeyoRT™ II M-MLV反转录酶(RNase H-) (试用装)

产品编号	产品名称	包装
D7160FT	BeyoRT™ II M-MLV反转录酶(RNase H-) (试用装)	2000U
D7160S	BeyoRT™ II M-MLV反转录酶(RNase H-)	10KU
D7160M	BeyoRT™ II M-MLV反转录酶(RNase H-)	50KU
D7160L	BeyoRT™ II M-MLV反转录酶(RNase H-)	200KU

产品简介:

- ➤ 碧云天生产的 BeyoRT™ II M-MLV 反转录酶(RNase H-),即 BeyoRT™ II M-MLV reverse transcriptase (RNase H-),是一种经过改造和优化的 M-MLV 反转录酶,具有正常的依赖于 RNA 或 DNA 模板的 DNA 聚合酶活性,能够以 RNA 或 DNA 为模板,在引物存在的情况下进行互补 DNA 链的合成,即可以进行 cDNA(complementary DNA)的第一链合成。
- ➤ 本产品是**最常用的反转录酶之一,广泛用于获得总 RNA 或 mRNA 后 cDNA 第一条链的合成**,后续可以用于 PCR、real-time PCR 也称定量 PCR(quantitative PCR, qPCR)、cDNA 的第二链合成以及 cDNA 文库的构建等。BeyoRT™ II M-MLV 反转录酶 (RNase H-)还可以通过反转录用于 DNA 探针的荧光、生物素、地高辛或同位素标记等,也可以通过引物延伸(primer extention) 来分析和研究 RNA。
- ▶ M-MLV (Moloney Murine Leukemia Virus),也称 MMLV 或 M-MuLV;反转录酶(reverse transcriptase)也称逆转录酶或 RT 酶。
- ▶ 本产品无 RNase H 活性,反转录效率高、产物长度长。本产品与野生型 M-MLV 反转录酶相比,无 RNase H 活性,不能选择性剪切 RNA 和 DNA 杂合双链中的 RNA,从而有助于高效合成长度更长的 cDNA。本产品经测试可以轻松完成长度为 8 kb 及以下基因的反转录(参考图 1),反转录的最大长度可以超过 10 kb。

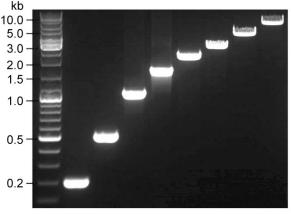
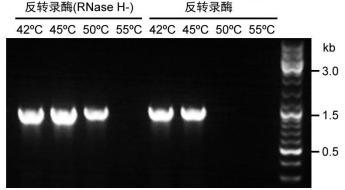



图1. 使用BeyoRTTM II M-MLV反转录酶(RNase H-)反转录总RNA后,对于不同长度的cDNA进行PCR扩增后的电泳效果图。图中可见对于0.2-8kb的cDNA可以非常高效地被反转录。

▶ 本产品**热稳定性高。**最适反应温度为 42-45℃,但当温度达到 50℃ 时仍具有很高活性,且可获得较高产量的 cDNA (图 2)。

BevoRT™ II M-MLV

野生型M-MLV

图 2. BeyoRT™ II M-MLV 反转录酶(RNase H-)在不同温度下的反转录效果。用从 NIH3T3 细胞抽提获得的总 RNA 500 ng, 在 20μl 的反转录体系中按照图中所示温度进行反转录。反转录完成后取 1μl 反转录产品进行目的基因的 PCR 扩增和电泳。

- ➤ 本产品**性价比高**。BeyoRTTM II M-MLV 反转录酶(RNase H-)是一种大肠杆菌重组高表达的的反转录酶,由于其表达量非常高,大大提高了本产品的性价比。本反转录酶含有从 Moloney Murine Leukemia Virus reverse transcriptase 基因克隆的缺失 RNase H domain 的 *pol* 基因,并进行了突变优化以提高其热稳定性、反转录效率和表达量。
- ➤ 酶活性定义: One unit of the enzyme incorporates 1 nmol of dTTP into acid-precipitable material in 10 min at 37°C using poly(A)•oligo(dT)₁₂₋₁₈ as template-primer。反应体系为 50 mM Tris-HCl(pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM DTT, 0.5mM [³H]-dTTP and 0.4 mM polyA•oligo(dT)₁₂₋₁₈。
- > 纯度: 不含 DNA 内切酶、外切酶和磷酸酯酶和 RNA 酶,可以满足常规反转录合成 cDNA 第一条链等的需要。
- > **酶储存溶液:** 20 mM Tris-HCl (pH 7.5), 300 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.01% NP-40 and 50% glycerol。
- **≻ 失活或抑制:** 80℃ 孵育 10 分钟可以导致 M-MLV 反转录酶(RNase H-)失活; EDTA、EGTA 等螯合剂、无机磷酸盐或焦磷酸盐以及聚氨(polyamine)对 M-MLV 反转录酶(RNase H-)有抑制作用。
- ▶ 本产品中 M-MLV 反转录酶(RNase H-)的浓度为 200U/μl, 用于体积为 20 微升的反转录体系时, 本试剂盒的不同包装足够分别进行 50、250 次和 1000 次反转录反应。

包装清单:

产品编号	产品名称	包装
D7160FT-1	BeyoRT™ II M-MLV反转录酶(RNase H-)	10µl
D7160FT-2	Reaction Buffer (5X)	0.1ml
	说明书	1份

产品编号	产品名称	包装
D7160S-1	BeyoRT™ II M-MLV反转录酶(RNase H-)	50µl
D7160S-2	Reaction Buffer (5X)	0.3ml
_	说明书	1份

产品编号	产品名称	包装
D7160M-1	BeyoRT™ II M-MLV反转录酶(RNase H-)	250μ1
D7160M-2	Reaction Buffer (5X)	1.2ml
	说明书	1份

产品编号	产品名称	包装
D7160L-1	BeyoRT™ II M-MLV反转录酶(RNase H-)	1ml
D7160L-2	Reaction Buffer (5X)	5ml
_	说明书	1份

保存条件:

-20℃保存。

注意事项:

- ▶ 对于GC含量比较高的RNA的反转录,产品的使用说明中都给予了特别说明,请予以关注。
- ▶ 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
- ▶ 为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:

cDNA第一条链的合成(First-stand cDNA Synthesis):

a. 参考如下表格中设置的20 μl反转录体系(RNase Inhibitor (R0102)和dNTP mix (D7373)可从碧云天订购):

	Total RNA	0.1 ng-5 μg
模板(右侧3种任选其中一种)	或poly(A) RNA/mRNA	10 pg-0.5 μg
	或specific RNA	0.01 pg-0.5 μg
	Oligo(dT) ₁₈ primer	0.5 μg(或100 pmol)
引物(右侧3种任选其中一种)	或 Random Hexamer primer	0.2 μg(或100 pmol)
	或 gene-specific primer	15-25 pmol
DEPC-treated Water	-	To 13.7 μl*

选择性步骤: 如果模板RNA的GC含量较高(例如大于55%)或者有比较严重的二级结构,混匀后微离心以把液体沉降至管底,65℃孵育5min,随后立即置于冰上冷却,以打开RNA中一些比较稳定的二级结构。

Reaction Buffer (5X) - 4 μl

RNase Inhibitor (40U/μl)	-	0.5 μl
dNTP Mix (25mM each)	-	0.8 μl**
BeyoRT™ II M-MLV反转录酶(RNase H-)	-	1 μ1***
总体积		20 μl

^{*}To 13.7山表示加入DEPC-treated Water至最终体积为13.7山。

- b. 轻轻混匀(用移液器轻轻吹打混匀或用涡旋混合器在最低速度轻轻混匀),随后离心沉淀液体。
- c. 如果使用Oligo(dT)₁₈或基因特异性引物,42℃孵育60 min。如果使用random hexamer(随机六聚体)作为引物,先在25℃孵育10 min,随后在42℃孵育60 min。**注意:** 对于GC含量较高或二级结构比较严重的模板RNA,可以50℃孵育60 min,以充分利用本产品在50℃时仍有良好的反转录酶活性这一特点,在较高温度进行反转录可以有效减少二级结构的干扰。
- d. 80℃孵育10 min以失活BeyoRT™ II M-MLV反转录酶(RNase H-)并终止反转录反应。**说明:** 对于5kb以上的长片断cDNA 不推荐采用加热的方法失活反转录酶,该方法易导致部分长片断DNA被剪切,此时可考虑酚氯仿抽提或柱纯化方法。
- e. 反转录产物可以直接用于后续的PCR反应等,也可以-20℃冻存以备以后使用。用于后续PCR反应时,如果PCR的反应体系为20和50微升,则推荐相应地使用0.8和2微升反转录产物。

引物延伸、探针标记等其它用途请自行参考M-MLV反转录酶(RNase H-)的相关文献资料进行。

常见问题:

- 1. 总RNA反转录产物电泳观察不到。
 - 反转录产物由于是从模板反转录而获得,而模板的量本身比较低,反转录的量通常还要少于模板量,并且总 RNA 的反转录产物大小很不均匀,因此通常总 RNA 的反转录产物直接电泳观察是观察不到的。
- 2. 反转录产物通过PCR扩增没有特异性条带。
 - a. PCR扩增没有获得特异性条带时建议先使用actin、GAPDH等作为内参进行PCR扩增,看是否可以成功扩增。如果可以成功,则说明PCR扩增体系没有问题,此时通常是目的基因的引物设计欠佳,当然也有可能是反转录产物质量欠佳。如果内参不能被很好地扩增,则有可能PCR体系存在问题或反转录产物质量欠佳。
 - b. 模板RNA发生了降解。哺乳动物细胞或组织的总RNA琼脂糖电泳后应该可以看到清晰的18S和28S rRNA条带,并且28S rRNA和18S rRNA的亮度比例应该大于等于2.0。如果比例小于2.0,则提示总RNA发生了显著的降解,最好能重新制备总RNA样品。避免RNA降解的主要方法是,严格进行RNA的相关操作,包括带洁净手套、戴一次性口罩、在洁净环境中抽提或制备RNA,以尽量避免RNase污染。
 - c. 模板RNA的纯度偏低。在提取纯化RNA的过程中,残留在溶液中的一些成分如苯酚、SDS、EDTA、胍盐、磷酸、焦磷酸、多胺、亚精胺等会抑制反转录酶活性。对RNA样品进行柱纯化,或者进行沉淀、洗涤和再溶解,通常可以有效去除残留的污染物。通常选择使用碧云天的BeyoZol或Trizol抽提获得的总RNA完全可以满足反转录反应的需要。
 - d. 反转录反应的模板量不足。在抽提获得总RNA后,在进行一些精细的定量检测时通常会进行DNase I消化,以充分去除可能的残留的DNA的干扰。DNase I进行热失活时,需要加入EDTA至终浓度为2.5mM,否则RNA在没有螯合剂的情况下,在加热过程中容易被水解,从而导致模板量不足。此外,扩增特定基因时,需要先查询该基因的组织分布特点,利用其高表达的组织进行目的基因的反转录和克隆。用该基因丰度极低的组织或细胞样品进行反转录和PCR扩增,通常会由于模板量过少而PCR扩增失败。
 - e. 没有使用适当的反转录引物。对于细菌RNA和不含poly(A)尾巴的RNA,要用random hexamer引物代替Oligo(dT)₁₈引物。使用基因特异性反转录引物时,需要确保基因特异性引物设计合理正确。
 - f. 如果RNA模板富含GC或容易形成二级结构,此时可以考虑把反转录温度提高到45-50℃。

相关产品:

产品编号	产品名称	包装
D7153	BeyoRT™ M-MLV反转录酶	2000U
D7159	BeyoRT™ M-MLV反转录酶(RNase H-)	2000U
D7160S	BeyoRT™ II M-MLV反转录酶(RNase H-)	10KU
D7160M	BeyoRT™ II M-MLV反转录酶(RNase H-)	50KU
D7160L	BeyoRT™ II M-MLV反转录酶(RNase H-)	200KU
D7166	BeyoRT™ cDNA第一链合成试剂盒(RNase H-)	10次
D7168S	BeyoRT™ II cDNA第一链合成试剂盒(RNase H-)	20次
D7168M	BeyoRT™ II cDNA第一链合成试剂盒(RNase H-)	100次
D7168L	BeyoRT™ II cDNA第一链合成试剂盒(RNase H-)	500次
D7170S	BeyoRT™ II cDNA合成试剂盒(with gDNA Eraser)	20次
D7170M	BeyoRT™ II cDNA合成试剂盒(with gDNA Eraser)	100次
D7170L	BeyoRT™ II cDNA合成试剂盒(with gDNA Eraser)	500次

^{**}dNTP浓度不同时使用的体积需作适当调整,此时DEPC-treated Water的用量需适当调整。

^{***}如果用基因特异性引物或Oligo(dT)₁₈反转录制备大于5kb的cDNA,则M-MLV反转录酶(RNase H-)用量宜增加至2 μl,以增加产量。

D7172	D11 65 - 65 A - D1-24 A	10%
D7172	cDNA第二链合成试剂盒	10次
D7205	Taq DNA Polymerase	200U
D7207	Taq DNA Polymerase	1000U
D7216	Pfu DNA Polymerase	200U
D7217	Pfu DNA Polymerase	1000U
D7218	BeyoTaq DNA Polymerase	200U
D7219	BeyoTaq DNA Polymerase	1000U
D7226	GC-rich PCR Buffer (4种套装)	共2ml
D7228	2X PCR Master Mix	400次
D7232	PCR Kit with Taq	400次
D7233	PCR Kit with Taq	2000次
D7237	PCR Kit with BeyoTaq	400次
D7251	Easy-Load TM PCR Master Mix (Blue, 2X)	400次
D7255	Easy-Load TM PCR Master Mix (Green, 2X)	400次
D7259	Easy-Load™ PCR Master Mix (Orange, 2X)	400次
D7371	dNTP Mixture (2.5mM each)	1ml
D7373	dNTP Mixture (25mM each)	250µl
R0011	Beyozol (总RNA抽提试剂)	100ml
R0016	Trizol (总RNA抽提试剂)	100ml
R0021	DEPC水(DNase、RNase free)	100ml
R0022	DEPC水(DNase、RNase free)	500ml
R0102	RNase Inhibitor	2000U
ST036	DEPC	10g

使用本产品的文献:

- 1. Liu Y,Long YH,Wang SQ,Zhang YY,Li YF,Mi JS,Yu CH,Li DY,Zhang JH,Zhang XJ.JMJD6 regulates histone H2A.X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity.
- 2. Li J,Xiang X,Xu H,Shi Y.Cilostazol Promotes Angiogenesis and Increases Cell Proliferation After Myocardial Ischemia-Reperfusion Injury Through a cAMP-Dependent Mechanism. Cardiovasc Eng Technol. 2019 Dec;10(4):638-647.

Version 2021.09.01